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Bayesian Inference of Phylogeny and
Its Impact on Evolutionary Biology
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As a discipline, phylogenetics is becoming transformed by a flood of molecular data.
These data allow broad questions to be asked about the history of life, but also
present difficult statistical and computational problems. Bayesian inference of phy-
logeny brings a new perspective to a number of outstanding issues in evolutionary
biology, including the analysis of large phylogenetic trees and complex evolutionary
models and the detection of the footprint of natural selection in DNA sequences.

The idea that species are related through a
history of common descent is an old one,
predating Darwin. Yet the idea provides

an organizing principle in biology that has pro-
found importance for a number of fundamental
questions. These questions range from the ba-
sic, What is the phylogeny of life?, or the more
esoteric, How can the association in traits
caused by a common history be accommodat-
ed?, to the practical, How did a virus spread
through a population? Today, in fact, any study
of DNA sequences sampled from different spe-
cies or from different individuals in a popula-
tion is likely to start with a phylogenetic anal-
ysis. The widespread use of phylogenies today
is largely driven by the fundamental importance

of phylogenies to questions in biology, the im-
mense quantity of sequence data produced by

biologists, and the fact that sophisticated anal-
yses can now be performed by using fast desk-
top computers.

Perhaps the most frustrating aspect of phy-
logenetic analysis to the uninitiated is the be-
wildering variety of inference methods that
could be performed and that are actively pro-
pounded by different experts. This article might
be misconstrued as describing yet another such
method—Bayesian inference of phylogeny, a
method that has only recently found its way to
the field despite its long tenure in statistics
(1–3). Although Bayesian inference of phy-
logeny uses the same models of evolution as
many other methods of analysis, it represents
a powerful tool for addressing a number of

long-standing, complex questions in evolu-
tionary biology (Table 1). Here we describe
Bayesian inference of phylogeny and illus-
trate applications for inferring large trees,
detecting natural selection, and choosing
among models of DNA substitution.

Bayesian Inference of Phylogeny
Bayesian inference of phylogeny is based
on a quantity called the posterior probabil-

ity of a tree (Fig. 1). Bayes’s theorem

Pr[Tree ? Data] 5
Pr[Data ? Tree] 3 Pr[Tree]

Pr[Data]

(where the vertical bar should be read as
“given”) is used to combine the prior proba-
bility of a phylogeny (Pr[Tree]) with the like-
lihood (Pr[Data ? Tree]) to produce a poste-
rior probability distribution on trees (Pr[Tree
? Data]). The posterior probability of a tree
can be interpreted as the probability that the
tree is correct. Inferences about the history of
the group are then based on the posterior
probability of trees. For example, the tree
with the highest posterior probability might
be chosen as the best estimate of phylogeny
(1). Usually all trees are considered a priori
equally probable, and the likelihood is calcu-
lated under one of a number of standard
Markov models of character evolution.

The posterior probability, although easy
to formulate, involves a summation over all
trees and, for each tree, integration over all
possible combinations of branch length and
substitution model parameter values. It is all
but impossible to do this analytically. Fortu-
nately, a number of numerical methods are
available that allow the posterior probability
of a tree to be approximated, the most useful
of which is Markov chain Monte Carlo
[MCMC (4)]. MCMC has revolutionized
Bayesian inference, with recent applications
to Bayesian phylogenetic inference (1–3) as
well as many other problems in evolutionary
biology (5–7). The basic idea is to construct
a Markov chain that has as its state space the
parameters of the statistical model and a sta-
tionary distribution that is the posterior prob-
ability distribution of the parameters. For the
phylogeny problem, the MCMC algorithm
involves two steps: (i) A new tree is proposed
by stochastically perturbing the current tree.
(ii) This tree is then either accepted or reject-
ed with a probability described by Metropolis
et al. (8) and Hastings (9). If the new tree is
accepted, then it is subject to further pertur-
bation. It turns out that for a properly con-
structed and adequately run Markov chain,
the proportion of the time that any tree is
visited is a valid approximation of the poste-
rior probability of that tree (10). Although
MCMC has made analysis of many complex
models possible, it is not a panacea, as chains
can fail to converge to the stationary distri-
bution for a number of reasons (e.g., a poor
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Table 1. The Bayesian approach to problems in phylogeny.

Problem Bayesian approach Ref.

Inferring phylogeny Find tree with maximum posterior probability; evaluate
features in common among the sampled trees

(1–3)

Evaluating uncertainty
in phylogenies

Evaluate clade probabilities; form credible set containing
trees whose cumulative probability sums to 0.95

(3, 40)

Detecting selection Model substitution process on the codon and calculate
probability of being in purifying or positively selected
class; sample substitutions and count number of
synonymous and nonsynonymous changes

(29, 32)

Comparative analyses Perform analysis on many trees, and weight results by
the probability that each tree is correct

(41–43)

Divergence times Use fossils as a calibration. Infer divergence times by
using a strict or relaxed molecular clock

(44)

Testing molecular
clock

Calculate Bayes factor for the clock versus no branch
length restrictions

(24)
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mechanism for proposing new states or fail-
ure to run the chain long enough).

Inferring Large Trees
Phylogenetic inference is difficult primari-
ly because of the large number of trees that
may describe the relationships of a group of
species and the vagaries of the substitution
process. When rates of DNA substitution
are high, for example, multiple substitu-
tions at a site can obscure the history of a
character. In fact, under some branch-
length conditions, phylogenetic methods
may converge to the wrong tree, a situation in
which the method is said to be inconsistent
(11). Phylogenetic methods that explicitly
model the substitution process, thereby cor-
recting for multiple
substitutions, can often
overcome problems of
statistical inconsisten-
cy. Unfortunately, the
most powerful meth-
ods (e.g., maximum
likelihood) can only be
used on relatively
small data sets and
many of the faster
methods (e.g., many
distance methods) do
not take full advantage
of the information
contained in the DNA
sequences.

Bayesian inference
takes a view of the
phylogeny problem
that makes analysis of
large data sets more
tractable: Instead of
searching for the opti-
mal tree, one samples
trees according to their
posterior probabili-
ties. Once such a
sample is available,
features that are
common among the
trees can be dis-
cerned. For example,
the sample can be
used to construct a
consensus tree, with the posterior probabil-
ity of the individual clades indicated on the
tree. This is roughly equivalent to perform-
ing a maximum likelihood analysis with
bootstrap resampling (3), but much faster.

To illustrate this, we wrote a computer
program implementing the MCMC algorithm
(8, 9). In particular, we implemented a variant
of MCMC called Metropolis-coupled MCMC
that is less prone to entrapment in local opti-
ma (12). We applied the method to four large
phylogenetic data sets that span the size range
of many problems faced by systematists to-

day (13–16). The smallest data set included
106 wingless sequences sampled from in-
sects, whereas the largest included 357 atpB
sequences sampled from plants. We assumed
a general model of DNA substitution in the
analyses (17, 18). This model allowed each
nucleotide change to have its own rate and
the nucleotide bases to have different fre-
quencies. We allowed rates to vary across
sites either by assuming that the rate at a site
is a random variable drawn from a gamma
distribution or by dividing the sites into first,
second, and third codon positions and esti-
mating their rates of substitution separately.
At least two chains were run for each data set.
All chains were started from random trees
(19).

The greatest practical problems associ-
ated with the use of MCMC are determin-
ing how long to run a chain to obtain a good
approximation of the posterior probabilities
of trees and identifying pathological cases
where the MCMC algorithm fails to con-
verge. We examined a number of diagnos-
tics to check convergence of multiple chains
[see supplemental material (20)]. Most im-
portant, we checked that inferences made
from independent chains were indistinguish-
able. The posterior probabilities of individual
clades are highly correlated for independent

chains, as shown in Fig. 2. Together the
results of the various diagnostics suggest that
the chains converged and that the inferences
from the chains are valid.

The Bayesian analyses, run in the course
of a few weeks on a fast desktop com-
puter, were largely concordant with the
parsimony analyses (20). However, the
support for the deeper divergences was
generally higher in the Bayesian analy-
sis. Notably, for the plant atpB data the
Bayesian tree differed in the placement of
Ceratophyllum. Parsimony placed this enus
sister to monocots with low support, where-
as the Bayesian analysis placed Cerato-
phyllum more basally and in a position
that is more congruent with the results

from another gene
(rbcL) (14 ) and a
study that included
560 species and three
genes (21). The
Bayesian analysis of
Astragalus was also
similar to the parsi-
mony analysis, with
the exception that the
support for the Neo-
Astragalus clade was
more similar to the
corrected parsimony
bootstrap propor-
tions rather than the
uncorrected values.
The Bayesian analy-
sis also provided in-
formation on the
substitution model
parameters (20). The
estimates of the sub-
stitution rates were
typically higher than
the corresponding
parsimony estimate;
this is necessarily
true as the parsi-
mony method mini-
mizes the number of
changes at a site and
must underestimate
the total number of
changes.

Choosing Appropriate Models
The results of any phylogenetic analysis, in-
cluding those discussed above, are condition-
al on the assumptions made in the analysis.
Modeling assumptions that poorly fit the ob-
servations can lead to erroneous inferences.
For example, a phylogenetic model that as-
sumes equal rates across sites can result in
inconsistent inferences when rates differ,
even if all other parameters of the model are
correct (22). It is important, then, that a care-
ful consideration of alternative models of

Fig. 1. The main components of a Bayesian analysis.
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evolution be made so that the most appropri-
ate is used in the phylogenetic analysis.

But how does one go about selecting the
most appropriate model? In the past de-
cade, practitioners in phylogenetics have
become more sophisticated when choosing
among evolutionary models. A common
approach uses the likelihood ratio test, with
the null distribution relying on asymptotic
theory or computer simulation (23). Like-
lihood ratio tests, and other similar meth-
ods, are very useful, but can depend on the
tree used to perform the test. A number of
Bayesian approaches can also be used to
choose among evolutionary models. For ex-
ample, Bayes factors— comparing the mar-

ginal likelihoods of two models— have
proven to be useful in choosing among
evolutionary models (24 ). One advantage
of these methods is that the results are not
conditional on an assumed topology being
correct. The Markov chain simulation ef-
fectively treats the topology as a nuisance
parameter by summing over trees. An ex-
haustive description of Bayesian methods

of model choice is not feasible here, but we
will illustrate one method that uses predic-
tive densities–posterior predictive simula-
tion (25).

If an evolutionary model does a good
job of explaining the observed DNA se-
quences, then data simulated under that
model should be similar to the observa-
tions. Posterior predictive simulation tests
the adequacy of a model by comparing a
test statistic with the posterior predictive
distribution of that statistic generated under
the assumption that the model is correct.
The test statistic should measure how well
a model performs in predicting the obser-
vations. The posterior predictive distribution

is approximated by simulating new observa-
tions by using parameter values sampled
from the posterior distribution of the model
being scrutinized. Uncertainty in the tree and
substitution model parameters is accommo-
dated by sampling from the posterior distri-
bution. The test statistic for the simulated
data is then compared with that for the actual
data. If a model provides a good fit to the

data, then the original test statistic should fall
within the central region of the simulated
distribution. For a poorly fitting model, the
test statistic will fall outside the tails of the
predictive distribution.

We illustrate the use of posterior predic-
tive simulation for measuring the overall ad-
equacy of a phylogenetic model in simulation
and for testing the homogeneity of nucleotide
frequencies at the Drosophila alcohol dehy-
drogenase (Adh) locus (26). For the first
case, we compared a simple model of DNA
substitution (27) with a more general model
(17) using data simulated under the latter. As
expected, the inadequacy of the simple
model is revealed (Fig. 3B; pT 5 0.008)
while the more parameter-rich model pro-
vides a good description of the underlying
process (Fig. 3A; pT 5 0.556). For the
empirical example involving 58 Adh se-
quences (26 ), we use a test statistic that
measures the general deviation in nucleo-
tide frequencies among the sequences (28).
The predictive distribution of this test sta-
tistic was evaluated by using MCMC (29)
and compared with the observed value (Fig.
3C). Because the observed value is well
outside the predictive distribution, the hy-
pothesis of constant base frequencies
among species is easily rejected. Although
this method of inference is in the classical
tradition of hypothesis testing, the Bayes-
ian approach adds the ability to deal appro-
priately with uncertainty in the phylogeny.

Bayesian Inference of Functional
Importance in Molecular Evolution
In studies of the evolution of biological
molecules and their functions, researchers
are often interested in substitution patterns.
Typical questions include the following: (i)
At what rate do various types of substitu-
tions occur? (ii) Has the mode of evolution
changed along the phylogeny? (iii) Which
parts of the protein are functionally con-
strained or under positive selection? And
(iv) is the evolution of amino acid residues
correlated? The two most common ap-
proaches to these questions are to infer
substitutions on a fixed phylogeny by using
parsimony and to analyze the inferred sub-
stitutions as if they were real data, or, to
develop likelihood models that can be com-
pared by using likelihood ratio tests.

The parsimony approach has been exten-
sively used in studies of molecular evolution.
However, it suffers from the drawback that
the number of substitutions will be underes-
timated and that a large part of the statistical
uncertainty is ignored when concentrating on
only one possible history of substitutions on
the phylogeny (29). The approach using like-
lihood ratio tests has a solid statistical foun-
dation, but every time a new hypothesis is to
be tested, a new likelihood model must be

Fig. 2. Convergence of independent Markov chains. The figures show the posterior probability of a
clade [or subtree; t(i)] conditional on the observed DNA sequences (X) for two chains, each of which
started from different random trees. Note that the posterior probabilities of individual clades found
in different chains [ f1(t(i) ? X) versus f2(t (i) ? X)] is highly correlated, and that there are no instances
in which a particular clade found with high probability in one chain is not found in the other. All
analyses assumed the general time reversible (GTR) model of DNA substitution. Rate variation
across sites was accommodated by using the gamma (1G) model for the ITS data and the
site-specific (1SS) model for the protein-coding genes. The analyses included from s 5 106 to s 5
357 sequences that were from c 5 378 to c 5 1497 sites in length.
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implemented. In addition, both methods typ-
ically assume that the phylogeny is known
without error.

Ideally, we would like to study molecular
evolution by making inferences regarding the
type and distribution of substitutions on the
phylogeny, while at the same time accommo-
dating the inherent uncertainty in the tree and
associated history of substitutions. Consider
an alignment of DNA sequences involving
four species in which “A” was observed at a
site for three of the species and “C” for the
fourth. One history of substitution that could
explain these observations involves a single
change along the branch leading to the C.
However, there are infinitely many other
such histories that could explain the observa-
tions, all involving more changes. The parsi-
mony approach considers only a single his-
tory—the history of substitution that involves
the fewest number of changes. In a Bayesian
framework one considers many possible his-
tories of substitution, weighted by their prob-

ability of occurring under a specific model of
evolution. Character histories can be sampled
in proportion to their probability by using
simulation (29). Moreover, the uncertainty in
the tree and model parameters can be ac-
counted for by sampling trees with MCMC.

The approach of mapping substitutions on
a tree can be used to detect positively selected
residues. Positive selection occurs when nat-
ural selection increases the frequency of new
amino acid mutations. Positive selection at
the molecular level is shown by an increase in
the rate of nonsynonymous substitution over
the rate of synonymous substitution. Positive
selection occurs in many systems (30), but
particular attention has focused on viral DNA
sequences. A statistical approach for identi-
fying sites undergoing positive selection is
based on first testing for the presence of
positively selected sites with a likelihood ra-
tio test, and then, if the test is significant,
identifying positively selected sites by using
an empirical Bayes approach (31, 32). Em-
pirical Bayes approaches differ from other
Bayesian methods in that the prior distribu-
tion is determined, in part, by the data. The
empirical Bayes approach has been useful in
identifying positively selected residues in a
number of systems (29, 32–34).

An alternative approach is to use the pos-
terior distribution of substitutions to examine
the pattern of nonsynonymous substitutions.
Of particular interest are amino acid residues
in which more nonsynonymous substitutions
occurred than expected under neutrality (i.e.,
equal nonsynonymous and synonymous
rates). We illustrate this method on a data set
containing 28 influenza sequences of the
hemagglutinin gene (35, 31). Hemagglutinin
is an envelope gene of the virus and is a
potential target for the host immune system.
Previous studies based on maximum likeli-
hood, and other methods, have demonstrated
that positive selection is acting on this set of
sequences (31, 35, 36). To identify positively
selected sites, we used the posterior expecta-
tion of the number of nonsynonymous sub-
stitutions in a site, ENS. Using MCMC, we
estimated ENS for each site under the hypoth-
esis that the rate of nonsynonymous substitu-
tions equals the rate of synonymous substitu-
tions (37, 38). The predictive distribution of
ENS was also evaluated by using MCMC.
Seven residues were identified with a value
of ENS larger than 4 (Fig. 4). All of these
residues were located in proximity to each
other on the globular head of the molecule.
The posterior predictive probability of ENS .
4 in a residue is approximately 0.002 if the
rate of nonsynonymous substitution equals
the rate of synonymous substitution. Presum-
ably these seven sites have increased levels of
nonsynonymous variation because of positive
selection. This observation is confirmed by
the fact that all seven residues are located

within known antigenic sites, and four of
them are located within the very same anti-
genic site (39). Strong positive selection ap-
pears to have been occurring in the history of
these sequences so as to avoid immune rec-
ognition. Moreover, a majority of the posi-
tively selected substitutions in the hemagglu-
tinin gene tends to be conservative amino
acid changes (37), implying that even though
there is strong selection pressure for changing
binding affinities in these sites, some selec-
tion must also occur in the same sites to
maintain the structure and function of the
protein.

The Future of Bayesian Phylogenetic
Inference
There are many reasons to believe that the
success of Bayesian inference will continue
as it is applied to a wider range of problems
in evolutionary biology. These reasons in-
clude the ease with which complex evolution-
ary models can be examined, the accommo-
dation of phylogenetic uncertainty (an advan-
tage conferred by using MCMC), and the fact
that the method concentrates attention on the
evolutionary models. Bayesian analysis
should also prove useful in addressing some
of the outstanding problems in phylogenetics,
such as detecting and accommodating hori-
zontal gene transfer (a process that compli-
cates phylogenetic analysis of bacteria), per-

Fig. 3. The posterior predictive distributions for
tests of (A) the adequacy of the GTR model, (B)
of the adequacy of the Jukes-Cantor model,
and (C) the hypothesis of constant nucleotide
frequencies over time. The arrows above the
distributions show the observed value of the
test statistics.

Fig. 4. The protein structure of the influenza
hemagglutinin protein, chains A and B. The
seven positively selected residues are marked in
red.
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forming phylogenetic analyses by using
whole-genome data and understanding the
evolution of the genome in the context of
phylogeny, and constructing large trees by
combining the results of smaller and overlap-
ping analyses.
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